Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 962
Filtrar
1.
Sci Rep ; 14(1): 7590, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38555385

RESUMO

Large volume soft tissue defects greatly impact patient quality of life and function while suitable repair options remain a challenge in reconstructive surgery. Engineered flaps could represent a clinically translatable option that may circumvent issues related to donor site morbidity and tissue availability. Herein, we describe the regeneration of vascularized porcine flaps, specifically of the omentum and tensor fascia lata (TFL) flaps, using a tissue engineering perfusion-decellularization and recellularization approach. Flaps were decellularized using a low concentration sodium dodecyl sulfate (SDS) detergent perfusion to generate an acellular scaffold with retained extracellular matrix (ECM) components while removing underlying cellular and nuclear contents. A perfusion-recellularization strategy allowed for seeding of acellular flaps with a co-culture of human umbilical vein endothelial cell (HUVEC) and mesenchymal stromal cells (MSC) onto the decellularized omentum and TFL flaps. Our recellularization technique demonstrated evidence of intravascular cell attachment, as well as markers of endothelial and mesenchymal phenotype. Altogether, our findings support the potential of using bioengineered porcine flaps as a novel, clinically-translatable strategy for future application in reconstructive surgery.


Assuntos
Bioengenharia , Qualidade de Vida , Humanos , Suínos , Animais , Bioengenharia/métodos , Engenharia Biomédica , Perfusão , Retalhos Cirúrgicos , Matriz Extracelular , Tecidos Suporte , Engenharia Tecidual/métodos
2.
J Biol Chem ; 300(3): 105747, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354783

RESUMO

Glycosyltransferases (GT) catalyze the glycosylation of bioactive natural products, including peptides and proteins, flavonoids, and sterols, and have been extensively used as biocatalysts to generate glycosides. However, the often narrow substrate specificity of wild-type GTs requires engineering strategies to expand it. The GT-B structural family is constituted by GTs that share a highly conserved tertiary structure in which the sugar donor and acceptor substrates bind in dedicated domains. Here, we have used this selective binding feature to design an engineering process to generate chimeric glycosyltransferases that combine auto-assembled domains from two different GT-B enzymes. Our approach enabled the generation of a stable dimer with broader substrate promiscuity than the parent enzymes that were related to relaxed interactions between domains in the dimeric GT-B. Our findings provide a basis for the development of a novel class of heterodimeric GTs with improved substrate promiscuity for applications in biotechnology and natural product synthesis.


Assuntos
Biocatálise , Glicosiltransferases , Flavonoides/química , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Especificidade por Substrato , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Bioengenharia/métodos
3.
Arterioscler Thromb Vasc Biol ; 44(3): e66-e81, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38174560

RESUMO

Peripheral artery disease is an atherosclerotic disease associated with limb ischemia that necessitates limb amputation in severe cases. Cell therapies comprised of adult mononuclear or stromal cells have been clinically tested and show moderate benefits. Bioengineering strategies can be applied to modify cell behavior and function in a controllable fashion. Using mechanically tunable or spatially controllable biomaterials, we highlight examples in which biomaterials can increase the survival and function of the transplanted cells to improve their revascularization efficacy in preclinical models. Biomaterials can be used in conjunction with soluble factors or genetic approaches to further modulate the behavior of transplanted cells and the locally implanted tissue environment in vivo. We critically assess the advances in bioengineering strategies such as 3-dimensional bioprinting and immunomodulatory biomaterials that can be applied to the treatment of peripheral artery disease and then discuss the current challenges and future directions in the implementation of bioengineering strategies.


Assuntos
Bioengenharia , Doença Arterial Periférica , Adulto , Humanos , Bioengenharia/métodos , Doença Arterial Periférica/terapia , Materiais Biocompatíveis , Terapia Baseada em Transplante de Células e Tecidos , Procedimentos Cirúrgicos Vasculares , Resultado do Tratamento
4.
Int J Artif Organs ; 47(3): 129-139, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253541

RESUMO

Liver transplantation is the only definitive treatment for end-stage liver disease and its availability is restricted by organ donor shortages. The development of liver bioengineering provides the probability to create a functional alternative to reduce the gap in organ demand and supply. Decellularized liver scaffolds have been widely applied in bioengineering because they can mimic the native liver microenvironment and retain extracellular matrix (ECM) components. Multiple approaches including chemical, physical and biological methods have been developed for liver decellularization in current studies, but a full set of unified criteria has not yet been established. Each method has its advantages and drawbacks that influence the microstructure and ligand landscape of decellularized liver scaffolds. Optimizing a decellularization method to eliminate cell material while retaining as much of the ECM intact as possible is therefore important for biological scaffold applications. Furthermore, crosslinking strategies can improve the biological performance of scaffolds, including reinforcing biomechanics, delaying degradation in vivo and reducing immune rejection, which can better promote the integration of re-cellularized scaffolds with host tissue and influence the reconstruction process. In this review, we aim to present the different liver decellularization techniques, the crosslinking methods to improve scaffold characteristics with crosslinking and the preparation of soluble ECM.


Assuntos
Transplante de Fígado , Tecidos Suporte , Tecidos Suporte/química , Matriz Extracelular/química , Fígado , Bioengenharia/métodos , Engenharia Tecidual/métodos
5.
Science ; 383(6680): 247, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38236976
6.
Adv Healthc Mater ; 13(1): e2300984, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37694339

RESUMO

Pancreatic cancer is a highly lethal form of digestive malignancy that poses significant health risks to individuals worldwide. Chemotherapy-based comprehensive treatment is the primary therapeutic approach for midlife and late-life patients. Nevertheless, the heterogeneity of the tumor and individual genetic backgrounds result in substantial variations in drug sensitivity among patients, rendering a single treatment regimen unsuitable for all patients. Conventional pancreatic cancer tumor organoid models are capable of emulating the biological traits of pancreatic cancer and are utilized in drug development and screening. However, these tumor organoids can still not mimic the tumor microenvironment (TME) in vivo, and the poor controllability in the preparation process hinders translation from essential drug screening to clinical pharmacological therapy. In recent years, many engineering methods with remarkable results have been used to develop pancreatic cancer organoid models, including bio-hydrogel, co-culture, microfluidic, and gene editing. Here, this work summarizes and analyzes the recent developments in engineering pancreatic tumor organoid models. In addition, the future direction of improving engineered pancreatic cancer organoids is discussed for their application prospects in clinical treatment.


Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Técnicas de Cocultura , Bioengenharia/métodos , Microambiente Tumoral , Organoides/patologia
7.
J Transl Med ; 21(1): 926, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129833

RESUMO

While cartilage tissue engineering has significantly improved the speed and quality of cartilage regeneration, the underlying metabolic mechanisms are complex, making research in this area lengthy and challenging. In the past decade, organoids have evolved rapidly as valuable research tools. Methods to create these advanced human cell models range from simple tissue culture techniques to complex bioengineering approaches. Cartilaginous organoids in part mimic the microphysiology of human cartilage and fill a gap in high-fidelity cartilage disease models to a certain extent. They hold great promise to elucidate the pathogenic mechanism of a diversity of cartilage diseases and prove crucial in the development of new drugs. This review will focus on the research progress of cartilaginous organoids and propose strategies for cartilaginous organoid construction, study directions, and future perspectives.


Assuntos
Organoides , Engenharia Tecidual , Humanos , Organoides/metabolismo , Engenharia Tecidual/métodos , Bioengenharia/métodos , Cartilagem
8.
J Vis Exp ; (199)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37843266

RESUMO

Lung transplantation is often the only option for patients in the later stages of severe lung disease, but this is limited both due to the supply of suitable donor lungs and both acute and chronic rejection after transplantation. Ascertaining novel bioengineering approaches for the replacement of diseased lungs is imperative for improving patient survival and avoiding complications associated with current transplantation methodologies. An alternative approach involves the use of decellularized whole lungs lacking cellular constituents that are typically the cause of acute and chronic rejection. Since the lung is such a complex organ, it is of interest to examine the extracellular matrix components of specific regions, including the vasculature, airways, and alveolar tissue. The purpose of this approach is to establish simple and reproducible methods by which researchers may dissect and isolate region-specific tissue from fully decellularized lungs. The current protocol has been devised for pig and human lungs, but may be applied to other species as well. For this protocol, four regions of the tissue were specified: airway, vasculature, alveoli, and bulk lung tissue. This procedure allows for the procurement of samples of tissue that more accurately represent the contents of the decellularized lung tissue as opposed to traditional bulk analysis methods.


Assuntos
Pneumopatias , Tecidos Suporte , Humanos , Animais , Suínos , Pulmão/cirurgia , Pulmão/irrigação sanguínea , Bioengenharia/métodos , Engenharia Biomédica , Engenharia Tecidual/métodos , Matriz Extracelular
9.
Biomaterials ; 298: 122143, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146365

RESUMO

Aging-associated neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases remain poorly understood and no disease-modifying treatments exist despite decades of investigation. Predominant in vitro (e.g., 2D cell culture, organoids) and in vivo (e.g., mouse) models of these diseases are insufficient mimics of human brain tissue structure and function and of human neurodegenerative pathobiology, and have thus contributed to this collective translational failure. This has been a longstanding challenge in the field, and new strategies are required to address both fundamental and translational needs. Bioengineered tissue culture models constitute a class of promising alternatives, as they can overcome the low cell density, poor nutrient exchange, and long term culturability limitations of existing in vitro models. Further, they can reconstruct the structural, mechanical, and biochemical cues of native brain tissue, providing a better mimic of human brain tissues for in vitro pathobiological investigation and drug development. We discuss bioengineering techniques for the generation of these neurodegenerative tissue models, including biomaterials-, organoid-, and microfluidics-based approaches, and design considerations for their construction. To aid the development of the next generation of functional neurodegenerative disease models, we discuss approaches to incorporate greater cellular diversity and simulate aging processes within bioengineered brain tissues.


Assuntos
Doenças Neurodegenerativas , Animais , Camundongos , Humanos , Engenharia Biomédica , Organoides , Técnicas de Cultura de Células/métodos , Bioengenharia/métodos , Modelos Animais de Doenças
10.
J Immunother Cancer ; 11(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37192783

RESUMO

BACKGROUND: Immunosuppressive tumor microenvironment (ITM) remains an obstacle that jeopardizes clinical immunotherapy. METHODS: To address this concern, we have engineered an exosome inherited from M1-pheototype macrophages, which thereby retain functions and ingredients of the parent M1-phenotype macrophages. The delivered RSL3 that serves as a common ferroptosis inducer can reduce the levels of ferroptosis hallmarkers (eg, glutathione and glutathione peroxidase 4), break the redox homeostasis to magnify oxidative stress accumulation, promote the expression of ferroptosis-related proteins, and induce robust ferroptosis of tumor cells, accompanied with which systematic immune response activation can bbe realized. M1 macrophage-derived exosomes can inherit more functions and genetic substances than nanovesicles since nanovesicles inevitably suffer from substance and function loss caused by extrusion-arised structural damage. RESULTS: Inspired by it, spontaneous homing to tumor and M2-like macrophage polarization into M1-like ones are attained, which not only significantly magnify oxidative stress but also mitigate ITM including M2-like macrophage polarization and regulatory T cell decrease, and regulate death pathways. CONCLUSIONS: All these actions accomplish a synergistic antitumor enhancement against tumor progression, thus paving a general route to mitigate ITM, activate immune responses, and magnify ferroptosis.


Assuntos
Carbolinas , Exossomos , Ferroptose , Macrófagos , Neoplasias , Macrófagos/metabolismo , Exossomos/química , Exossomos/metabolismo , Imunoterapia , Ferroptose/efeitos dos fármacos , Microambiente Tumoral , Animais , Camundongos , Carbolinas/farmacologia , Bioengenharia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Linhagem Celular Tumoral
11.
Cell ; 186(10): 2062-2077.e17, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37075755

RESUMO

Entry of enveloped viruses into cells is mediated by viral fusogenic proteins that drive membrane rearrangements needed for fusion between viral and target membranes. Skeletal muscle development also requires membrane fusion events between progenitor cells to form multinucleated myofibers. Myomaker and Myomerger are muscle-specific cell fusogens but do not structurally or functionally resemble classical viral fusogens. We asked whether the muscle fusogens could functionally substitute for viral fusogens, despite their structural distinctiveness, and fuse viruses to cells. We report that engineering of Myomaker and Myomerger on the membrane of enveloped viruses leads to specific transduction of skeletal muscle. We also demonstrate that locally and systemically injected virions pseudotyped with the muscle fusogens can deliver µDystrophin to skeletal muscle of a mouse model of Duchenne muscular dystrophy and alleviate pathology. Through harnessing the intrinsic properties of myogenic membranes, we establish a platform for delivery of therapeutic material to skeletal muscle.


Assuntos
Bioengenharia , Lentivirus , Proteínas de Membrana , Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Camundongos , Fusão Celular , Fusão de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/virologia , Bioengenharia/métodos , Distrofia Muscular de Duchenne/terapia , Modelos Animais de Doenças , Tropismo Viral , Lentivirus/genética
12.
Angew Chem Int Ed Engl ; 62(17): e202218613, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36855015

RESUMO

Probes allowing high-contrast discrimination of cancer cells and effective retention are powerful tools for the early diagnosis and treatment of cancer. However, conventional small-molecule probes often show limited performance in both aspects. Herein, we report an ingenious molecular engineering strategy for tuning the cellular uptake and retention of rhodamine dyes. Introduction of polar aminoethyl leads to the increased brightness and reduced cellular uptake of dyes, and this change can be reversed by amino acetylation. Moreover, these modifications allow cancer cells to take up more dyes than normal cells (16-fold) through active transport. Specifically, we further improve the signal contrast (56-fold) between cancer and normal cells by constructing activatable probes and confirm that the released fluorophore can remain in cancer cells with extended time, enabling long-term and specific tumor imaging.


Assuntos
Neoplasias , Humanos , Linhagem Celular Tumoral , Bioengenharia/métodos , Rodaminas/análise , Rodaminas/química , Rodaminas/metabolismo , Animais , Camundongos
13.
Nat Protoc ; 18(1): 108-135, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261633

RESUMO

Tissue engineering is an interdisciplinary field that combines stem cells and matrices to form functional constructs that can be used to repair damaged tissues or regenerate whole organs. Tissue stem cells can be expanded and functionally differentiated to form 'mini-organs' resembling native tissue architecture and function. The choice of the scaffold is also pivotal to successful tissue reconstruction. Scaffolds may be broadly classified into synthetic or biological depending upon the purpose of the engineered organ. Bioengineered intestinal grafts represent a potential source of transplantable tissue for patients with intestinal failure, a condition resulting from extensive anatomical and functional loss of small intestine and therefore digestive and absorptive capacity. Prior strategies in intestinal bioengineering have predominantly used either murine or pluripotent cells and synthetic or decellularized rodent scaffolds, thus limiting their translation. Microscale models of human intestinal epithelium on shaped hydrogels and synthetic scaffolds are more physiological, but their regenerative potential is limited by scale. Here we present a protocol for bioengineering human intestinal grafts using patient-derived materials in a bioreactor culture system. This includes the isolation, expansion and biobanking of patient-derived intestinal organoids and fibroblasts, the generation of decellularized human intestinal scaffolds from native human tissue and providing a system for recellularization to form transplantable grafts. The duration of this protocol is 12 weeks, and it can be completed by scientists with prior experience of organoid culture. The resulting engineered mucosal grafts comprise physiological intestinal epithelium, matrix and surrounding niche, offering a valuable tool for both regenerative medicine and the study of human gastrointestinal diseases.


Assuntos
Bancos de Espécimes Biológicos , Tecidos Suporte , Humanos , Camundongos , Animais , Engenharia Tecidual/métodos , Bioengenharia/métodos , Organoides , Mucosa Intestinal , Fibroblastos , Matriz Extracelular
14.
Proc Natl Acad Sci U S A ; 119(33): e2201776119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35943987

RESUMO

Many natural organisms, such as fungal hyphae and plant roots, grow at their tips, enabling the generation of complex bodies composed of natural materials as well as dexterous movement and exploration. Tip growth presents an exemplary process by which materials synthesis and actuation are coupled, providing a blueprint for how growth could be realized in a synthetic system. Herein, we identify three underlying principles essential to tip-based growth of biological organisms: a fluid pressure driving force, localized polymerization for generating structure, and fluid-mediated transport of constituent materials. In this work, these evolved features inspire a synthetic materials growth process called extrusion by self-lubricated interface photopolymerization (E-SLIP), which can continuously fabricate solid profiled polymer parts with tunable mechanical properties from liquid precursors. To demonstrate the utility of E-SLIP, we create a tip-growing soft robot, outline its fundamental governing principles, and highlight its capabilities for growth at speeds up to 12 cm/min and lengths up to 1.5 m. This growing soft robot is capable of executing a range of tasks, including exploration, burrowing, and traversing tortuous paths, which highlight the potential for synthetic growth as a platform for on-demand manufacturing of infrastructure, exploration, and sensing in a variety of environments.


Assuntos
Bioengenharia , Biomimética , Polimerização , Robótica , Agaricales/crescimento & desenvolvimento , Bioengenharia/métodos , Biomimética/métodos , Movimento , Desenvolvimento Vegetal
15.
Curr Opin Biotechnol ; 77: 102756, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35930844

RESUMO

Recent breakthroughs in biofabrication of bioasemblies, consisting of the engineered structures composed of biological or biosynthetic components into a single construct, have found a wide range of practical applications in medicine and engineering. This review presents an overview of how the bottom-up assembly of living entities could drive advances in medicine, by developing tunable biological models and more precise methods for quantifying biological events. Moreover, we delve into advances beyond biomedical applications, where bioassemblies can be manipulated as functional robots and construction materials. Finally, we address the potential challenges and opportunities in the field of engineering living bioassemblies, toward building new design principles for the next generation of bioengineering applications.


Assuntos
Bioengenharia , Engenharia Biomédica , Bioengenharia/métodos
16.
Science ; 377(6602): 148-150, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857553

RESUMO

Scalable biofabrication of heart helical tissue pattern augments pumping function.


Assuntos
Bioengenharia , Coração Artificial , Coração , Desenho de Prótese , Bioengenharia/métodos , Humanos , Contração Miocárdica
17.
Tissue Eng Part B Rev ; 28(6): 1209-1222, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35451330

RESUMO

Organoids, which are multicellular clusters with similar physiological functions to living organs, have gained increasing attention in bioengineering. As organoids become more advanced, methods to form complex structures continue to develop. There is evidence that the extracellular microenvironment can regulate organoid quality. The extracellular microenvironment consists of soluble bioactive molecules, extracellular matrix, and biofluid flow. However, few efforts have been made to discuss the microenvironment optimal to engineer specific organoids. Therefore, this review article examines the extent to which engineered extracellular microenvironments regulate organoid quality. First, we summarize the natural tissue and organ's unique chemical and mechanical properties, guiding researchers to design an extracellular microenvironment used for organoid engineering. Then, we summarize how the microenvironments contribute to the formation and growth of the brain, lung, intestine, liver, retinal, and kidney organoids. The approaches to forming and evaluating the resulting organoids are also discussed in detail. Impact statement Organoids, which are multicellular clusters with similar physiological function to living organs, have been gaining increasing attention in bioengineering. As organoids become more advanced, methods to form complex structures continue to develop. This review article focuses on recent efforts to engineer the extracellular microenvironment in organoid research. We summarized the natural organ's microenvironment, which informs researchers of key factors that can influence organoid formation. Then, we summarize how these microenvironmental controls significantly contribute to the formation and growth of the corresponding brain, lung, intestine, liver, retinal, and kidney organoids. The approaches to forming and evaluating the resulting organoids are discussed in detail, including extracellular matrix choice and properties, culture methods, and the evaluation of the morphology and functionality through imaging and biochemical analysis.


Assuntos
Matriz Extracelular , Organoides , Humanos , Organoides/fisiologia , Matriz Extracelular/química , Bioengenharia/métodos , Fígado
19.
Nat Commun ; 13(1): 891, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173152

RESUMO

Development of hyperproducing strains is important for biomanufacturing of biochemicals and biofuels but requires extensive efforts to engineer cellular metabolism and discover functional components. Herein, we optimize and use the CRISPR-assisted editing and CRISPRi screening methods to convert a wild-type Corynebacterium glutamicum to a hyperproducer of L-proline, an amino acid with medicine, feed, and food applications. To facilitate L-proline production, feedback-deregulated variants of key biosynthetic enzyme γ-glutamyl kinase are screened using CRISPR-assisted single-stranded DNA recombineering. To increase the carbon flux towards L-proline biosynthesis, flux-control genes predicted by in silico analysis are fine-tuned using tailored promoter libraries. Finally, an arrayed CRISPRi library targeting all 397 transporters is constructed to discover an L-proline exporter Cgl2622. The final plasmid-, antibiotic-, and inducer-free strain produces L-proline at the level of 142.4 g/L, 2.90 g/L/h, and 0.31 g/g. The CRISPR-assisted strain development strategy can be used for engineering industrial-strength strains for efficient biomanufacturing.


Assuntos
Bioengenharia/métodos , Reatores Biológicos/microbiologia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Prolina/biossíntese , Sequência de Bases , Sistemas CRISPR-Cas/genética , Proteínas de Transporte/genética , Edição de Genes/métodos , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Transporte Proteico/genética
20.
Cells ; 11(3)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35159275

RESUMO

The novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Mesenchymal stem cells (MSCs) are currently utilized in clinics for pulmonary inflammatory diseases, including acute respiratory distress syndrome and acute lung injury. Given that MSCs offer a promising treatment against COVID-19, they are being used against COVID-19 in more than 70 clinical trials with promising findings. Genetically engineered MSCs offer promising therapeutic options in pulmonary diseases. However, their potential has not been explored yet. In this review, we provide perspectives on the functionally modified MSCs that can be developed and harnessed for COVID-19 therapy. Options to manage the SARS-CoV-2 infection and its variants using various bioengineering tools to increase the therapeutic efficacy of MSCs are highlighted.


Assuntos
Bioengenharia/métodos , COVID-19/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/epidemiologia , COVID-19/virologia , Citocinas/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Células-Tronco Mesenquimais/citologia , Pandemias/prevenção & controle , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...